緊急シャットダウン(ESD)の早期探知

  • 化学
  • 異常探知

課題

石油化学製品の製造工程は複雑な設備と細かな設定を必要とする。そのため、設備がESDした場合、運営費用の損失だけでなく化学物質による環境被害などが発生する可能性が存在。したがって、設備の動作、運営上の異常要因を事前に探知し、ESDの可能性を予防することが重要。

アプローチ

マシンラーニングおよびディープラーニングモデルによるデータベースの異常探知モデルを使用して、ポリプロピレン(PP)製造工程の反応炉における異常兆候を事前に予測し、ESDを防止。

創出された価値

最大7日前にPP製造工程の反応炉における異常予測を可能に。 ESDを早期に検出することで、コストだけでなく環境および安全上の被害を最小限に抑制。

このケースについて詳しく知りたいですか?

MakinaRocksのAI専門家にご相談ください

 


専門家に相談する